Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Cell Journal [Yakhteh]. 2018; 20 (1): 1-9
in English | IMEMR | ID: emr-191489

ABSTRACT

Objective: In this study, we describe an efficient approach for stable knockdown of adenosine kinase [ADK] using lentiviral system, in an astrocytoma cell line and in human Wharton's jelly mesenchymal stem cells [hWJMSCs]. These sources of stem cells besides having multilineage differentiation potential and immunomodulatory activities, are easily available in unlimited numbers, do not raise ethical concerns and are attractive for gene manipulation and cell-based gene therapy


Materials and Methods: In this experimental study, we targeted adenosine kinase mRNA at 3' and performed coding sequences using eight miR-based expressing cassettes of anti-ADK short hairpin RNA [shRNAs]. First, these cassettes with scrambled control sequences were cloned into expressing lentiviral pGIPZ vector. Quantitative real time-polymerase chain reaction [qRT-PCR] was used to screen multi-cassettes anti-ADK miR-shRNAs in stably transduced U-251 MG cell line and measuring ADK gene expression at mRNA level. Extracted WJMSCs were characterized using flow cytometry for expressing mesenchymal specific marker [CD44+] and lack of expression of hematopoietic lineage marker [CD45-]. Then, the lentiviral vector that expressed the most efficient anti-ADK miR-shRNA, was employed to stably transduce WJMSCs


Results: Transfection of anti-ADK miR-shRNAs in HEK293T cells using CaPO4 method showed high efficiency. We successfully transduced U-251 cell line by recombinant lentiviruses and screened eight cassettes of anti-ADK miR- shRNAs in stably transduced U-251 MG cell line by qRT-PCR. RNAi-mediated down-regulation of ADK by lentiviral system indicated up to 95% down-regulation of ADK. Following lentiviral transduction of WJMSCs with anti-ADK miR- shRNA expression cassette, we also implicated, down-regulation of ADK up to 95% by qRT-PCR and confirmed it by western blot analysis at the protein level


Conclusion: Our findings indicate efficient usage of shRNA cassette for ADK knockdown. Engineered WJMSCs with genome editing methods like CRISPR/cas9 or more safe viral systems such as adeno-associated vectors [AAV] might be an attractive source in cell-based gene therapy and may have therapeutic potential for epilepsy

2.
Anatomy & Cell Biology ; : 301-305, 2017.
Article in English | WPRIM | ID: wpr-47822

ABSTRACT

Busulfan is an anticancer drug, which causes the apoptosis germ cells and azoospermia in humans and animals. Abnormal morphology of spermatozoa related to the male infertility. The sperm morphology is evaluation of sperm size, shape and appearance characteristics should be assessed by carefully observing a stained sperm sample under the microscope. Evaluation of sperm morphology has been considered as one of the most important factors for a successful fertilization and determining sperm quality. The mice were assigned to tow experimental groups: control and busulfan. Each group included six mice that were housed under standard conditions. The volume was estimated using the nucleator method. The sperm's flegellum and mid-piece length was estimated by counting the number of intersections between the tails and Merz grid test line in an unbiased counting frame, superimposed on live images of sperms. Our results demonstrated a significant different in the volume and surface of the sperm's head and the length of the sperm's flagellum in the control and busulfan groups. Busulfan can effect on the volume of the sperm's head and the length of the sperm's flagellum in rat.


Subject(s)
Animals , Humans , Male , Mice , Rats , Apoptosis , Azoospermia , Busulfan , Fertilization , Flagella , Germ Cells , Head , Infertility, Male , Methods , Spermatozoa , Tail
SELECTION OF CITATIONS
SEARCH DETAIL